Does Dihydroergotamine Treat the "Whole Migraine"? Sheena K. Aurora, MD^{1*}, Sutapa Ray, PhD¹, Kelsey Satterly, PhD¹, Stephen B. Shrewsbury, MB ChB¹, John Hoekman, PhD¹

¹Impel NeuroPharma, Seattle, WA

*Presenting Author

Introduction

The Whole Migraine: Phases of the Migraine Cycle

• Migraine is a complex and multifaceted disorder with 5 distinct phases; therefore, it is important to consider treating the whole migraine (Figure 1)¹

Figure 1. The Five Phases of the Migraine Cycle Include the Premonitory, Aura, Headache, Postdrome, and Interictal Phases¹⁻⁴

Current Migraine Therapies and Limitations

- One of the primary goals for the treatment of migraine attacks includes the rapid relief of pain and associated symptoms⁵
- Most migraine therapies target a very narrow set of receptors focused mainly on headache pain
- Triptans are commonly used as acute medications and are 5-hydroxytryptamine (5-HT)_{18/1D} receptor agonists with some affinity for the 5-HT_{1F} receptor subtype⁶
- Novel emerging acute and preventive therapies include ditans (5-HT₁ receptor agonists), gepants (calcitonin gene-related peptide [CGRP] receptor antagonists), and anti-CGRP monoclonal antibodies⁶
- Because migraine encompasses a spectrum of symptoms, this narrowly targeted receptor profile for most migraine therapies does not allow patients to achieve a holistic relief from migraine, and patients often discontinue treatment due to a lack of consistency, headache recurrence, and accompanying nausea^{1,5}

Dihydroergotamine (DHE)

- DHE has a long, established history as an effective migraine therapy and is well-regarded by physicians because of its^{7,8}:
- Rapid onset^{9,10}

- Efficacy against a full range of acute symptoms of migraine, including pain, photophobia, and phonophobia¹¹

- Efficacy irrespective of the time of treatment (**Table 1**)¹²

- those who⁸:
- Have status migrainosus⁷
- Wake with migraine¹³
- Are triptan resistant¹³

- Have severe or prolonged migraine^{9,11,13}
- There is also minimal risk of medication overuse with DHE use⁷

Table 1. The Pharmacokinetics of Different Routes of **Administration of DHE**

DHE Pharmacokinetics									
DHE Route of Administration	Dose (mg)	T _{max} (Minutes)	AUC _{0-2hours} (h*pg/mL)	Absolute Bioavailability*					
Intravenous ^{7,15}	1	1-6	3019	100%					
Intramuscular ^{7,16}	1	15-24	4791	100%					
Subcutaneuous ^{8,17}	1	20-40	N/A	100%					
Nasal spray ⁷	2	48-60	428.7-1316	32%†					
POD ^{®7,18}	1.45	30	1595	59%					

to an intravenous dose. 13-101% according to the Summary Basis of Approval.¹⁹

Methods

This is a review of the comparative pharmacology of acute treatments for migraine performed by conducting a literature review of the pharmacology and biological activity of new and existing migrainespecific treatments

Objectives

- in published literature

DHE is effective in patients with difficult-to-treat migraine, such as

- Have menstrual migraine¹⁴
- Have allodynia^{11,13}

AUC, area under the curve; DHE, dihydroergotamine; N/A, not available; POD, precision olfactory delivery. *Absolute bioavailability is defined as the amount of drug from a formulation that reaches systemic circulation relative

[†]Nasal spray refers to Migranal[®], which has a variable bioavailability; 32% according to the prescribing information and

• To compare receptor pharmacology of acute treatments for migraine

• To examine the pharmacology of acute treatments for migraine in the context of the migraine cycle to provide insight into the total migraine benefits of treating with a broad receptor binding agent, such as DHE, versus the limitations of treating with narrowly targeted therapies

• To find a possible explanation for why DHE has such a high response rate even in the most difficult-to-treat migraine

Results

Table 2. Compared to Other Acute Migraine Therapies, DHE **Displays a Broad Range of Pharmacological Activity at Serotonergic (5-HT), Adrenergic (\alpha), and Dopaminergic (D) Receptor Subtypes**

Potent agonist Partial agonist		Antagonist		Partial Antagonist		
Receptor	IV DHE/ DHE ²⁰⁻²²	Inhaled DHE ²⁰	Triptans ²³	Ditans ²³	Gepants ⁶	Receptor Distribution ²⁴⁻²⁸
5-HT _{1A}						raphe nuclei, hippocampus
5-HT _{1B}						substantia nigra, globus pallidus, basal ganglia
5-HT _{1D}						brain
5-HT _{1E}						cortex, putamen
5-HT _{1F}						cortex, hippocampus
5-HT _{2A}						platelets, smooth muscle, cerebral cortex
5-HT _{2B}						stomach fundus
5-HT _{2C}						choroid, hippocampus, substantia nigra
5-HT ₃						area postrema, sensory and enteric nerves
5-HT ₄						CNS and myenteric neurons, smooth muscle
5-HT ₅						brain
5-HT ₆						brain
5-HT ₇						brain
$lpha_{1a}$						postsynaptic effector cells
α _{1b}						heart, liver, spleen
$lpha_{2a}$						presynaptic adrenergic
α _{2b}						lipocytes, smooth muscle
α _{2c}						postsynaptic effector cells (heart, lipocytes, brain), presynaptic adrenergic and cholinergic nerve terminals, kidney, eye
β ₂						postsynaptic effector cells (smooth muscle, cardiac muscle)
β ₃						postsynaptic effector cells, especially lipocytes; heart
D ₂						brain, vascular, heart, sympathetic ganglia
D ₃						brain, vascular, kidney
D ₄						brain, heart, kidney
CGRP						PNS, CNS, periphery
EphrinB2						brain, heart, lung, kidney, placenta, pancreas, liver and skeletal muscle

CGRP, calcitonin gene-related peptide; CNS, central nervous system; DHE, dihydroergotamine; IV, intravenous; PNS, peripheral nervous system.

Note: Functional receptor binding data presented in this table is not a direct comparison, but a review of available, published data on functional receptor binding for acute migraine drug therapies. Inhaled DHE meslyate is MAP0004.

Figure 2. Hypothetical Model for How DHE Targets the Whole Conclusion Migraine

- Unlike other migraine therapeutics, DHE interacts with several receptor families and subtypes, which include serotonergic, adrenergic, and dopaminergic subtypes (**Table 2**)
- DHE also slowly dissociates from 5-HT_{1B/1D} receptor sites, which may explain why DHE has sustained anti-migraine effects³⁵
- DHE is able to exert a greater influence than single receptor agonists/ antagonists over the pathophysiology of the migraine cycle due to its widespread pharmacological activity (Figure 2)
- DHE administered at consistent doses and optimal plasma concentrations not only maximizes therapeutic gain, but also improves safety and tolerability^{7,20}
- Advances in DHE delivery systems will further address these issues^{7,20}

References

- **1.** Charles A. *Headache*. 2013;53(2):413-419.
- **2.** Goadsby PJ, et al. *Physiol Rev.* 2017;97(2):553-622.
- **3.** Linde M. Acta Neurol Scand. 2006;114(2):71-83.
- **4.** Headache Classification Committee of the International Headache Society. *Cephalalgia.* 2018;38(1):1-211.
- **5.** Lipton RB, et al. *Headache.* 2019;59(10):1762-1772.
- **6.** Do TP, et al. *J Headache Pain.* 2019;20(1):37.
- 7. Silberstein SD, et al. *Headache*. 2020;60(1):40-57.
- **8.** Baron EP, Tepper SJ. *Future Neuro*. 2011;6(3):327-333.
- **9.** Saper JR, et al. *Headache.* 2006;46(Suppl 4):S212-220.
- **10.** Kori SH, et al. Ann Neurol. 2010;68(S14).M-41.
- **11.** Tepper SJ, et al. *Headache*. 2012;52(1):37-47.
- **12.** Tepper SJ, et al. *Mayo Clin Proc.* 2011;86(10):948-955.
- **13.** Kori SH, et al. Ann Neurol. 2010;68(S14).M-48.
- **14.** Aurora S, et al. *J Headache Pain.* 2013;14(Suppl 1):P143.
- **15.** Saper JR, Silberstein S. *Headache.* 2006;46(Suppl 4):S171-S181.
- **16.** Silberstein SD, McCrory DC. *Headache*. 2003;43(2):144-166.
- **17.** Tfelt-Hansen PC. *Cephalalgia*. 2013;33(13):1122-1131. **18.** Shrewsbury SB, et al. *Headache*. 2019;59(3):394-409.
- **19.** Satterly KH, et al. *Headache*. 2019;59:1-208.#P134.
- **20.** Cook RO, et al. *Headache.* 2009;49(10):1423-1434.
- **21.** Guzman M, et al. *Neurology.* 2020;94(S15). #4425.
- **22.** Suzuki K, et al. *FEBS Open Bio.* 2016;6(5):461-468.
- **23.** Rubio-Beltrán E, et al. Br J Pharmacol. 2019;176(24):4681-4695.
- **24.** Katzung BG, et al. *Basic & Clinical Pharmacology.* New York: McGraw-Hill Medical, 2012.
- **25.** Perez-Lloret S, et al. *Expert Opin Drug Saf.* 2014;13(3):351-360.
- **26.** Schwinn DA. *Adv Pharmacol.* 1994;31:333-341.
- **27.** Uniprot. https://www.uniprot.org/uniprot/P29323 (Accessed May 14, 2020).
- **28.** Deen M, et al. *J Headache Pain.* 2017;18(1):96.
- **29.** Srikiatkhachorn A, et al. *Headache*. 2008;42:566-574.
- **30.** Masterson CG, Durham PL. *Headache*. 2010;50(9):1424-1439.
- **31.** Marek GJ, et al. *Neuropsychopharmacology*. 2003;28(2):402-412.
- **32.** DaSilva AF, et al. *Neurology.* 2017;88(17):1634-1641.
- **33.** Suzuki K, et al. *FEBS Open Bio.* 2016;6(5):461-468.
- **34.** McBeath JG, Nanda A. *Headache*. 1994;34(3):148-151.
- **35.** Kori S, et al. *J Headache Pain.* 2013;14(Suppl 1):P75.

Disclosures and Acknowledgments

All authors are full-time employees and stockholders of Impel NeuroPharma. This research was sponsored by Impel NeuroPharma. Editorial support was provided by IMPRINT Science, and funded by Impel NeuroPharma.

