DHE Pharmacology Revisited: Does a Broad Receptor Profile Molecule Treat the Whole Migraine?

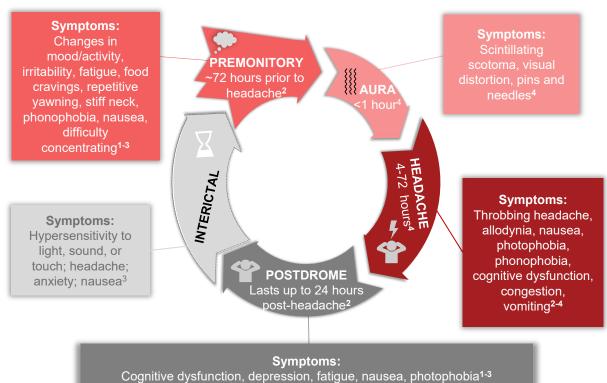
Sheena K. Aurora, MD¹; Sutapa Ray, PhD¹; Kelsey Satterly, PhD¹; Lisa McConnachie, PhD^{1*}; Stephen B. Shrewsbury, MB ChB¹; John Hoekman, PhD¹ ¹Impel NeuroPharma, Seattle, WA, USA *Presenting author

Introduction

The Whole Migraine: Phases of the Migraine Cycle

• Migraine is a complex and multifaceted disorder with 5 distinct phases; therefore, it is important to consider treating the whole migraine (**Figure 1**)¹

Current Migraine Therapies and Limitations


- One of the primary goals for the treatment of migraine attacks includes the rapid relief of pain and associated symptoms⁵
- Most migraine therapies target a very narrow set of receptors focused mainly on headache pain
- Triptans are commonly used as acute medications and are 5-hydroxytryptamine (5-HT)_{1B/1D} receptor agonists with some affinity for the 5-HT_{1F} receptor subtype⁶
- Novel emerging acute and preventive therapies include ditans (5-HT_{1F} receptor agonists), gepants (calcitonin gene-related peptide [CGRP] receptor antagonists), and anti-CGRP monoclonal antibodies⁶
- Because migraine encompasses a spectrum of symptoms, this narrowly targeted receptor profile of most migraine therapies does not allow patients to achieve a holistic relief from migraine, and patients often discontinue treatment due to a lack of efficacy and adverse events^{1,7}

Dihydroergotamine (DHE)

• DHE has a long, established history as an effective migraine therapy and is well regarded by physicians because of its^{8,9}:

- Rapid onset^{10,11}
- Efficacy against a full range of acute symptoms of migraine, including pain, photophobia, and phonophobia¹²
- Efficacy irrespective of the time of treatment¹³
- DHE is effective in patients with difficult-to-treat migraine⁹, such as those who have status migrainosus⁸, wake up with migraine¹⁴, are triptan resistant¹⁴, have allodynia^{12,14}, or have severe or prolonged migraine^{10,12,14}
- There is minimal risk of medication overuse with DHE⁸
- DHE can slowly dissociate from some target receptor sites, which may explain why DHE has sustained anti-migraine effects, extended duration of benefit, and reduced rates of headache recurrence and medication overuse headaches^{8,15}

Figure 1. The Five Phases of the Migraine Cycle Include the Premonitory, Aura, Headache, Postdrome, and Interictal Phases¹⁻⁴

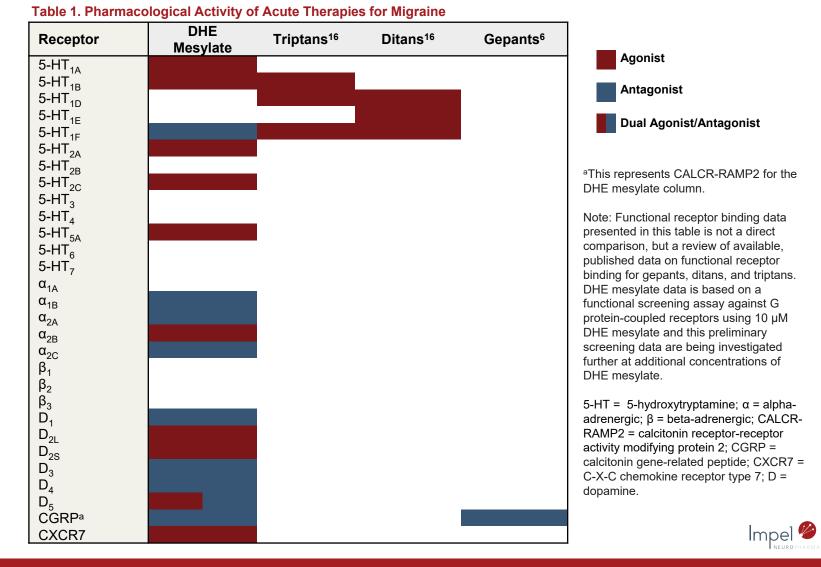
Objective

- To examine comparative receptor pharmacology of various acute therapies for migraine and update the understanding of DHE mesylate pharmacology utilizing an *in vitro* screening approach
- To determine the functional receptor activity of DHE mesylate utilizing an *in vitro* screening methodology

DHE Pharmacology Revisited: Does a Broad Receptor Profile Molecule Treat the Whole Migraine?

Sheena K. Aurora, MD¹; Sutapa Ray, PhD¹; Kelsey Satterly, PhD¹; Lisa McConnachie, PhD^{1*}; Stephen B. Shrewsbury, MB ChB¹; John Hoekman, PhD¹ ¹Impel NeuroPharma, Seattle, WA, USA *Presenting author

Methods


- *In vitro* screening for functional receptor activity of DHE mesylate was screened against 168 G protein-coupled receptors using the gpcrMAX Assay Panel, which encompasses 60 distinct receptor families
- A radiolabeled ligand assay was also used to evaluate the binding of DHE mesylate (0-300 nM) to the 5-HT₃ and 5-HT_{4E} receptors
- A literature review of the pharmacology of currently approved acute treatments for migraine was performed

Screening of G Protein-Coupled Receptors (GPCRs)

- Functional receptor activity of DHE mesylate was screened with the gpcrMAX Assay Panel by Eurofins DiscoverX (Fremont, CA), and was run in both agonist and antagonist modes
- Cells expressing various receptors were incubated with 10 µM DHE mesylate for 30-180 minutes, depending on the specific receptor
- Following incubation, agonist and antagonist activity was calculated by measuring chemiluminescence associated with
 ß-arrestin recruitment
- Known agonists were used as positive controls
- Agonist activity was considered positive if activity was >30% and antagonist activity was considered positive if inhibition was >50%

Results

- Results from the literature review of the pharmacology of acute therapies for migraine and positive hits from the screening gpcrMAX assay of DHE mesylate may be interpreted as shown in **Table 1**
- DHE mesylate exhibited strong agonist activity at the 5-HT_{1A}, α_{2B} , and CXCR7 receptors and strong antagonist activity at the α_{1B} , α_{2A} , α_{2C} , D_3 , D_4 , and 5-HT_{1F} receptors
- Further work showed DHE mesylate did not bind to the 5-HT₃ receptor, and did so in a limited capacity to the 5-HT_{4E} receptor, at concentrations up to 300 nM
- A model was created to show where in migraine progression DHE may act to address migraine symptoms based on the DHE mesylate screening data (Figure 2)

Presented at the Virtual AAN Annual Meeting, April 17-21, 2021

DHE Pharmacology Revisited: Does a Broad Receptor Profile Molecule Treat the Whole Migraine?

Sheena K. Aurora, MD¹; Sutapa Ray, PhD¹; Kelsey Satterly, PhD¹; Lisa McConnachie, PhD¹*; Stephen B. Shrewsbury, MB ChB¹; John Hoekman, PhD¹ ¹Impel NeuroPharma, Seattle, WA, USA *Presenting author

Figure 2. Hypothesis for How DHE May Target the Whole Migraine

KEY

OHE may alleviate headache pain symptoms via several mechanisms

- Constrict pain-producing intracranial extracerebral blood vessels via 5-HT_{1B} receptors¹⁷
- Alleviates allodynia¹²
- May lengthen the interictal period and have a beneficial role in migraine prophylaxis due to agonist activity at the 5-HT_{1A} receptor¹⁸
- Potentially reverse central sensitization⁹
- May be involved in repressing CGRP release via activation of α_2 -adrenoceptors, which leads to antimigraine effects¹⁹

OHE is effective for acute treatment of migraine with aura¹³

- DHE has 5-HT_{2A} receptor activity, which is involved in mood disorders²⁰
- DHE exerts dopamine receptor activity, and a dopamine imbalance during migraine attacks may contribute to pain, discomfort, increased sensory sensitivity, and aversive reactions to environmental stimuli^{21,22}

Conclusion

- Unlike other migraine therapeutics, DHE mesylate interacts with several receptor families and subtypes, which include serotonergic, adrenergic, dopaminergic, and CGRP receptor subtypes
- It is suggested that DHE may exert a greater influence than single receptor agonists/antagonists over the pathophysiology of the migraine cycle due to its widespread pharmacological activity
- It is believed that DHE administered at consistent doses and optimal plasma concentrations will not only maximize therapeutic gain, but also improve tolerability and reliability for the patient^{8,18,23}
- Advances in non-injected, non-oral delivery systems for DHE hold promise to achieve these goals^{8,18,23}

References

1. Charles A. Headache. 2013;53:413-419. 2. Goadsby PJ, et al. Physiol Rev. 2017;97:553-622. 3. Linde M. Acta Neurol Scand. 2006;114:71-83. 4. Headache Classification Committee of the International Headache Society. Cephalalgia. 2018;38:1-211. 5. Lipton RB. et al. Headache. 2019:59:1310-1323. 6. Do TP. et al. J Headache Pain. 2019;20:37. 7. Lipton RB, et al. Headache. 2019;59:1762-1772. 8. Silberstein SD, et al. Headache. 2020;60:40-57. 9. Baron EP, Tepper SJ. Future Neurol. 2011;6:327-333. 10. Saper JR, et al. Headache. 2006;46(Suppl 4):S212-220. 11. Kori SH, et al. Ann Neurol. 2010;68(S14).M-41.12. Tepper SJ, et al. Headache. 2012;52:37-47.13. Tepper SJ, et al. Mayo Clin Proc. 2011;86:948-955. 14. Kori SH, et al. Ann Neurol. 2010;68(S14).M-48. 15. Kori S, et al. J Headache Pain. 2013;14(Suppl 1):P75. 16. Rubio-Beltrán E, et al. Br J Pharmacol. 2019;176:4681-4695. 17. Silberstein SD, McCrory DC. Headache. 2003;43:144-166. 18. Cook RO, et al. Headache. 2009;49:1423-1434. 19. Masterson CG, Durham PL. Headache. 2010;50:1424-1439. 20. Marek GJ, et al. Neuropsychopharmacology. 2003;28:402-412. 21. Akerman S, et al. Cephalalgia. 2007;27:1308-1314. 22. Da Silva AF, et al. Neurology. 2017;88:1634-1641. 23. Shrewsbury SB, et al. Headache. 2019;59:394-409.

Disclosures and Acknowledgments

All authors are full-time employees and stockholders of Impel NeuroPharma. This research was sponsored by Impel NeuroPharma. Editorial support was provided by IMPRINT Science and funded by Impel NeuroPharma.